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Abstract— Autonomous learning through interaction with the
physical world is a promising approach to designing controllers
and decision-making policies for robots. Unfortunately, learning
on robots is often difficult due to the large number of samples
needed for many learning algorithms. Simulators are one way
to decrease the samples needed from the robot by incorporating
prior knowledge of the dynamics into the learning algorithm. In
this paper we present a novel method for transferring data from
a simulator to a robot, using simulated data as a prior for real-
world learning. A Bayesian nonparametric prior is learned from
a potentially black-box simulator. The mean of this function is
used as a prior for the Probabilistic Inference for Learning
Control (PILCO) algorithm. The simulated prior improves the
convergence rate and performance of PILCO by directing the
policy search in areas of the state-space that have not yet been
observed by the robot. Simulated and hardware results show the
benefits of using the prior knowledge in the learning framework.

I. INTRODUCTION

Designing useful controllers for real robots can be dif-
ficult and tedious. Reinforcement learning (RL) [1] is one
method for autonomously developing controllers based on
data collected while operating in the real world. While RL
has shown significant promise and impressive results in some
domains, such as robot locomotion [2], helicopter flight [3],
[4], backgammon [5], and elevator control [6], RL has not
yet, in general, been employed in mainstream robotics as a
standard tool for controller design. One of the many reasons
RL is difficult to apply to real robots is the large number
of samples needed to explore the often high-dimensional
continuous state spaces common to many robot platforms [7].
These samples become particularly burdensome to obtain
when they come from the real world because robots are
expensive, only run in real-time, often require direct human
supervision, and are subject to hardware degradation and
failure.

One common tactic for decreasing the number of real-
world samples needed in robotic RL is to perform “men-
tal rehearsal” [7], a technique whereby the learning agent
generates samples for an RL algorithm through querying
a simulation of the robot. Simulation learning samples are
typically much less costly (financially and temporally) to
obtain than samples from a real robot. Simulations typically
capture some aspects of an environment accurately and can
provide valuable information to augment real-world data [8],
[9]. Unfortunately, even very complex simulations of robots
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Fig. 1: The proposed algorithm provides a method for transferring policies
and learned transition dynamics from a simulated environment (left) to a
real-world learning agent (right). The simulator captures the basic dynamics
of the physical system but is not sufficiently accurate for performing learning
in the simulator alone. Using policy parameters and transition dynamics
learned in the simulator leads to faster learning on the physical robot. The
algorithm is shown to decrease the number of samples needed by the real-
world learning agent to achieve useful behavior.

rarely (if ever) perfectly model the real world, and imple-
menting policies on a robot that were learned in an imperfect
simulation can yield poor real-world performance [10].

There is significant existing work verifying the idea that
using prior knowledge can increase the performance of
learning algorithms. For instance, using a physics-based prior
when learning inverse dynamics using a Gaussian process has
been shown to yield superior performance when compared
to using no prior knowledge [11], [12]. Also, several existing
RL algorithms use simulators to augment real robot data [8],
[9], [13]. Likewise, the transfer learning community [14]
has sought to more seamlessly transfer information from
simulators to the real world [15]. However, the above work
assumes either an explicit form for the simulator equations
or a discrete state and action space. In contrast, we leverage
nonparametric Gaussian processes (GPs) to incorporate data
from simulators in a principled way. The simulators can
model continuous states and actions and be black-box codes
such as proprietary robot simulators or based on finite
element methods.

In this paper we introduce a method for using samples
from a simulated robot to decrease the number of real-world
samples that are needed to learn a good policy (see Figure 1).
Specifically, we apply a learning algorithm in a simulator to
learn a model of the simulated dynamics and a good policy
for the simulated domain. The learned transition dynamics
and policy are then used as a prior for real-world learning us-



ing the Probabilistic Inference for Learning Control (PILCO)
algorithm [16]. The simulated prior is used in a GP model of
the transition dynamics in PILCO to infer about states that
the real-world system has not yet sampled. We show that,
even when the simulator is inaccurate, using an informative
simulated prior decreases the learning samples needed in
the real world and increases the average performance of the
achieved solution. Our approach differs from previous work
using priors in PILCO [17] in that we are not limited to linear
priors. Using a learned, nonlinear prior from a simulator
allows for incorporating prior information from arbitrarily
complex simulations without needing to make assumptions
about the underlying dynamics of the system.

The main contributions of the paper are (1) a principled
approach to incorporating data from any simulator into the
PILCO learning algorithm, (2) a derivation of propagating
uncertain inputs through a Gaussian process with a nonpara-
metric mean function, and (3) simulated and hardware results
empirically showing the benefits of using prior information
in the learning process. Using prior data from a simple
simulator, we show convergence to a good policy on a
physical inverted pendulum with at least three times less data
than is needed when a zero-mean prior is used.

The remainder of the paper is organized as follows. In
Section II we recount some necessary background material
on RL, the PILCO algorithm, and Gaussian processes. Sec-
tion III details the derivation of using a Gaussian process
with a nonlinear mean when the inputs are uncertain. Sim-
ulated and hardware results of the proposed algorithm are
then shown in Section IV. Finally, we conclude with a brief
discussion in Section V and summary in Section VI.

II. BACKGROUND MATERIAL

In this section we briefly recount RL, the PILCO algorithm,
and

Gaussian processes.

A. Reinforcement Learning

The RL problem is modeled as a finite horizon Markov
Decision Process [18], M = 〈S,A,R, T 〉 with states S and
actions A. In this work we assume that both the states and
the actions are real-valued vectors. The reward function R
defines the quality of the current state by mapping the current
state to a real number. In this work define the reward function
as the negative of a user-defined cost function, such that
R(s) = −c(s). The cost function is chosen to depend only
on the current state and not the chosen action. The transition
dynamics T map the probability of reaching state s′ as a
function of the current state s and the current action a, so
that T (s′, s, a) = p(s′|s, a). The goal of the RL algorithm
is to find a policy π∗ : s → a that minimizes the expected
long-term cost

J =

H∑
t=0

Est [c(st)] (1)

over some fixed horizon H .

RL algorithms can be broadly classified as either model-
based, where the algorithm explicitly builds a model of T
which is in turn used to find π∗, or model-free, where π∗

is found without ever building a model of the transition
dynamics. Model-based learners are generally more sample
efficient but more computationally intensive than model-free
approaches [19].

RL algorithms also differ as to how the optimal policy is
found. In policy search methods, π∗(θ) is parameterized by
a vector θ and the RL algorithm searches for the optimal
parameter values. In value-function methods, π∗ is instead
found by keeping track of the estimated long-term cost of
each state. Policy search methods are often advantageous as
expert knowledge can easily be incorporated by specifying
the form of the policy. Also, the number of parameters
needed to optimize are usually fewer in policy search meth-
ods than in corresponding value-function approaches [7].

B. PILCO

PILCO (Algorithm 1, black text) is a recently developed
model-based policy search RL algorithm [16], [20], [21].
One of the key advantages of PILCO is a careful handling of
uncertainty in the learned model dynamics that helps prevent
negative effects of model bias. By explicitly accounting for
uncertainty, the algorithm is able to determine where in
the state space it can accurately predict policy performance
and where more data are needed to be certain of future
outcomes. As outlined in Algorithm 1, PILCO learns policy
parameters in batches, or episodes. In each episode, the
algorithm collects data from the target domain using the
current policy parameters. The collected data are then used
to learn a Gaussian process model of the transition dynamics.
This model is used to update the policy parameters via
an optimization routine such as CG or L-BFGS. Once the
current policy parameters have converged, the target domain
is rerun with the updated parameters and the process is
repeated.

In this paper, as for the original PILCO algorithm, we use
empirical simulation and hardware results to verify the utility
of the proposed algorithm.

C. Gaussian Processes

Gaussian processes (GPs) [22] are a popular regression
tool for modeling observed data while accounting for uncer-
tainty in the predictions, and are used to model the transition
dynamics in PILCO. Formally, a GP is a collection of random
variables, of which any finite subset are Gaussian distributed.
A GP can be thought of as a distribution over possible
functions f(x), x ∈ X such that

f(x) ∼ GP(m(x), k(x,x′)), (2)

where m(x) is the mean function and k(x,x′) is the
covariance function.

With a fixed mean function and data {X,y}, the predictive



Algorithm 1 PILCO [16] with Prior Knowledge

1: input: Controller parameters, either random (θ ∼
N (0, I)) or from the simulator (θp). Apply random
control signals and record data.

2: input: Observed simulator data {Xp,yp}
3: Learn dynamics model using simulator data
4: while task not learned do
5: Learn probabilistic (GP) dynamics model using real-

world data with the simulator data as a prior
6: while not converged do
7: Approximate inference for policy evaluation
8: Gradient-based policy improvement
9: Update parameters θ (e.g., CG or L-BFGS)

10: end while
11: return θ∗

12: Set π∗ ← π(θ)∗

13: Apply π∗ to system and record data
14: end while

distribution for a deterministic input x∗ is

f∗ ∼ N (µ∗,Σ∗)

µ∗ = m(x∗) + k(x∗, X)(K + σ2
nI)−1(y −m(X))

= m(x∗) + k(x∗, X)β

Σ∗ = k(x∗,x∗)− k(x∗, X)(K + σ2
nI)−1k(X,x∗)

where β = (K + σ2
nI)−1(y −m(X)), K = k(X,X), and

σ2
n is the noise variance parameter.
As in the PILCO algorithm [16], in this paper we use the

squared error kernel for its computational advantages. Thus,
the kernel is

k(x,x′) = α2 exp(−1

2
(x− x′)TΛ−1(x− x′)),

where α2 is the signal variance and Λ is a diagonal matrix
containing the square of the length scales for each input di-
mension. The hyperparmeters (σ2

n, α2, and Λ) are learned via
evidence maximization [22] (lines 3 and 5 of Algorithm 1).

III. PILCO USING A NONLINEAR PRIOR MEAN

The generic PILCO algorithm assumes a zero-mean prior
on the transition dynamics. This uninformative prior does
not bias the model, giving the algorithm freedom to model
arbitrary transition dynamics. However, the uninformative
prior also means that the policy search algorithm cannot
make informed decisions about areas of the state space from
which no samples have yet been collected. In contrast, in
this paper we propose using PILCO with an informative prior
consisting of data from a simulator of the real domain. The
informative prior gives the policy search phase information
about what effect a policy will have on the system even in
areas of the state space that have not yet been explored.
The proposed algorithm is shown in Algorithm 1, with the
additions to the original algorithm highlighted in blue on
lines 1-3 and 5.

The modified algorithm takes as inputs policy parameters
(either randomly initialized or from a learning algorithm

applied to the simulator) and observed simulated data. The
simulated data are used to build a probabilistic model of the
simulator’s transition dynamics. The mean of this model is
then used as a prior for the transition dynamics model learned
in the target domain.

Given data from a simulation of the target domain, one
way to incorporate the data into the learning algorithm is
to train a single GP using both simulated and real data
as inputs. Mixing simulated and real data has been shown
to cause poor performance as the GP models of the real-
world transition dynamics can become corrupted by incorrect
simulation data [23]. In our approach, even with an incorrect
simulator, real data from the target domain will eventually
overcome the effects of the prior and converge to the true
transition dynamics as the number of obtained data points
increases.

To effectively use the learned GP dynamics model in
PILCO (line 7 in Algorithm 1), the algorithm performs
simulated roll-outs of the system dynamics using the learned
model. This calculation requires machinery for correctly
propagating the mean and covariance of uncertain inputs
through the GP model of the transition dynamics. In this sec-
tion we give the required calculations to propagate uncertain
inputs through a GP when the prior function is the mean of
a different GP. This mean prior function is equivalent to a
radial basis function (RBF) network.

Unlike deterministic inputs, mapping an uncertain Gaus-
sian test input x∗ ∼ N (µ,Σ) through a GP does not, in
general, result in a Gaussian posterior distribution. However,
the posterior can be approximated as a Gaussian distribution
by computing the mean and covariance of the posterior
distribution [24]. PILCO iteratively uses these Gaussian ap-
proximations when performing long-term predictions using
the learned GP transition dynamics.

We now show the posterior mean and covariance equations
when the prior mean of the GP is an RBF network. When
the learning domain has multiple target variables (such as
angle and angle rate for the inverted pendulum), independent
GPs are learned for each output dimension. Where necessary,
we differentiate between different output dimensions with
subscripts a and b. In each equation, blue text denotes the
terms that come from the prior. A full derivation of these
equations is given in the Appendix.

The predictive mean µ∗ is given by

µ∗ = βTq+βTp qp, (3)

where qi = α2|ΣΛ−1 + I|−1/2 exp(− 1
2ν

T
i (Σ + Λ)−1)νi)

with νi = xi − µ. The subscript p denotes terms coming
from the prior.

The predictive covariance Σ∗ of the uncertain test inputs
through the GP f(x) is given element-wise as

σ2
ab = δab(α

2
a − tr((Ka + σ2

εaI)−1Q)) + βTaQβb+

βTpaQpβpb + βTpapQ̂βb + βTa Q̂pβpb−(
βTa qa + βTpaqpa

)(
βTb qb + βTpbqpb

)
, (4)

where δab is 1 when a = b and 0 otherwise.



Finally, PILCO uses the covariance between the uncertain
test input x∗ ∼ N (µ,Σ) and the predicted output f(x∗) ∼
N (µ∗,Σ∗) to compute the joint distribution p(x∗, f(x∗)).
This covariance is calculated as

Σx∗,f∗ =

n∑
i=1

βiqiΣ(Σ + Λ)−1(xi − µ)+

np∑
i=1

βpiqpiΣ(Σ + Λp)
−1(xpi − µ). (5)

In summary, Eq. (5)-(7) are the true predictive mean,
covariance, and input-output covariance of an uncertain input
passed through a GP with a mean function modeled as an
RBF network.

In addition to propagating uncertain inputs through the
transition dynamics model, PILCO requires the calculation
of closed-form derivatives of the predicted mean, covariance,
and input-output covariance with respect to the input mean
and covariance. These calculations are rather long, but not
particularly difficult and so are not included here. A full
derivation of the required derivatives is given on the first
author’s website.1

The computation of the predictive mean, covariance, and
input-output covariance using a simulated prior requires
approximately twice as much computation time as the zero-
mean prior case (assuming the number of data points in the
prior GP and the current GP are roughly equal), as most
of the computations are merely repeated on the prior data.
However, note that the size of the prior data is fixed and does
not grow with iteration number, thus the additional computa-
tional complexity of the algorithm due to the nonlinear prior
does not grow as new data points are observed.

IV. RESULTS

Using the equations derived in the previous section, we
perform both simulated and hardware experiments to identify
how well the proposed alterations to PILCO work in practice.
In all of these experiments we run the generic PILCO
algorithm in the simulated domain and use the data collected
during that learning exercise as the prior for the learning
in the target domain. Note that any learning algorithm
(including just randomly sampling the state-action space)
could be applied in the simulator to obtain the required
observations for the prior, but collecting data in the simulator
using a good policy will more likely yield better results as
data points will exist in the important areas of the state space.

As in [16], we learn dynamics models using tuples
(xt,µt) as inputs and differences ∆t = xt+1 − xt as
training targets. In all the experiments we also use the
generalized binary saturating cost function from [16].

A. Using a Simulation Prior in a Simulated Domain

The first set of results explore the performance of Al-
gorithm 1 using two different simulations of the same
domain. This will allow us to demonstrate the benefits of

1http://markjcutler.com/papers/Cutler15_ICRA_
additional.pdf

TABLE I: Default parameters used in the inverted pendulum and cart pole
domains.

Pendulum
Mass

Pendulum
Length

Friction
Coefficient

Cart
Mass

Max Force
or Torque

Inverted
Pendulum 1 Kg 1 m 0.1 N/m/s - 2.5 Nm

Cart
Pole 0.5 Kg 0.5 m 0.1 N/m/s 0.5 Kg 10 N
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(b) Cart-Pole

Fig. 2: Learning curves for the 2-dimensional inverted pendulum (a) and the
4-dimensional cart-pole (b) domains when the prior comes from the same
domain. Using an informative prior on the transition dynamics consistently
improves performance regardless of the initial policy parameters. In the more
complicated cart-pole domain using good initial policy settings does little
to improve the algorithm performance unless prior transition information is
used as well. Each line shows the mean of 20 independent learning samples
each evaluated 5 times. The shaded regions show 95% confidence bounds
on the standard error of the mean.

the algorithm as a function of the difference between the
domains. The two chosen domains are the benchmark RL
domains of the inverted pendulum and the inverted pendulum
on a cart, or the cart-pole domain. Unless otherwise stated,
the default parameters used for simulation of these domains
are giving in Table I.

Using two identical instances of the target domains, we
first verify that, given a perfect simulation of a physical robot
(assuming such a simulation exists), no learning needs to be
performed in the real-world as a learning algorithm can be
applied in the simulator and the resulting control policy used

http://markjcutler.com/papers/Cutler15_ICRA_additional.pdf
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on the real robot. Figures 2(a) and 2(b) show the perfor-
mance of Algorithm 1 under these idealized circumstances
in the pendulum and cart-pole domains, respectively. In each
figure the learning curves depict average cost as a function
of learning episode. We compare (a) the original PILCO
algorithm with a random policy initialization, (b) the original
PILCO algorithm using learned policy parameters from the
simulation, (c) the proposed algorithm using a random policy
initialization, and (d) the proposed algorithm using policy
parameters from the simulation.

Note that, as expected, the learning curves either start with
the performance of a random policy or with the performance
of the converged policy, depending on the initial policy
parameters used. When the prior policy is used and the
prior for the transition dynamics comes from the same
domain, the algorithm remains at the same performance
level during the duration of the learning episodes as there
is no incentive for the algorithm to explore different policy
parameters. However, when a zero-mean prior is used (the
original PILCO algorithm), even when initialized with near-
optimal policy parameters, the performance actually gets
worse for several learning episodes while the policy search
explores different policy parameters before returning to the
initial values. This transient learning phase is mild in the
simple inverted pendulum domain. However, in the more
complicated cart-pole domain, using a good prior policy does
little to increase the learning rate when compared a random
policy initialization.

In both domains, even when the algorithms are initialized
with random policy parameters, using an informative prior
speeds the learning process and consistently leads to a better
policy. The on-average worse performance of the original
PILCO algorithm comes from the algorithm occasionally
converging to a sub-optimal solution. For instance, in the in-
verted pendulum domain, the pendulum has sufficient torque
to swing up to vertical with just one swing-back. However,
the learning agent occasionally, depending on the random
initial policy parameters, converges to a policy that consists
of a double swing-back, taking longer than is necessary
to get the pendulum to the inverted configuration. In these
experiments, the prior data were generated using an instance
of the PILCO algorithm that converged to a single swing-back
policy. Thus, even when the policy parameters are randomly
initialized, having an informative prior coming from a good
policy consistently helps the algorithm to converge to a single
swing-back policy.

The next set of results demonstrates the performance of
Algorithm 1 when the data for the prior come from a domain
with different transition dynamics than the target domain.
In Figures 3 and 4 the performance of PILCO using an
informative prior (transition dynamics and policy parameters)
is compared to using a uniform prior and random initial
policy parameters. The plots show the difference between
the uninformative and the informative prior as the domain
parameters are varied between the prior domain and the
target domain. For instance, in Figure 3(a) a prior learned
in the default domain was used in a target domain where
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(a) Varying friction coefficient
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(c) Varying pendulum inertia

Fig. 3: Differences between the original PILCO algorithm and the algorithm
when using an informative prior in the pendulum domain. In each case
the informative prior was learned using the nominal pendulum parameters
in Table I and then tested in a domain where the default parameters were
varied. Positive cost differences show the modified algorithm performing
better than the original during that episode. Thus, except when the target
domain was extremely different from the prior domain, the modified
algorithm performed better than the original. Each line is the average of
24 independent learning runs. The error bars have been left off for clarity,
but are similar in magnitude to those in Figure 2.
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(b) Varying torque

Fig. 4: Results when varying the friction coefficient and the actuator force
from the prior to the target domain in the cart-pole domain. As in the
inverted pendulum (see Figure 3), the modified algorithm is robust to
significant difference between the prior and the target domain.

the friction coefficient was up to 15 times more than the
default value. In each plot, the parameters not varied were
kept at their default values. Positive cost differences show
the modified algorithm performing better than the original.
Except for extreme changes in the parameters of the target
domain compared to the prior domain, using an informative
prior from an imperfect simulator is still better than using
no prior at all.

Due to the nature of continuous state-action RL being
an optimization problem in an arbitrary non-convex space,
it is difficult, if not impossible, to quantify or predict the
expected improvement of using a simulated prior in a domain
as opposed to using a zero-mean prior. Intuitively, we should
expect data from an arbitrarily poor simulator not to be
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Fig. 5: Difference between PILCO with a zero-mean prior and the proposed
extension with a nonparametric prior coming from a simulator when
implemented on a physical inverted pendulum. In the simulated prior both
the dynamics and the policy are passed to the real domain. Each algorithm
was run three times, with the policy at each episode evaluated 5 times. Error
bars show a 95% confidence interval on the standard error of the mean.
On average, the additional knowledge from the simulator led the physical
system to converge to a good policy in just one episode, whereas without
prior knowledge PILCO required at least three learning episodes before the
pendulum could be stabilized.

useful, and possibly even be harmful to the learning process
if it causes the gradient-based policy optimizer to look in
the wrong directions. For instance, in Figure 3(b), when
the true domain thrust is 200% higher than the simulated
domain thrust, the optimal policies are fundamentally dif-
ferent between the domains. The additional thrust allows
the pendulum to go directly from hanging down to upright
without a swing-back. The zero-mean prior algorithm dis-
covers this simple policy after a single iteration; however,
using the simulated prior, the learning is biased towards
policies that use a swing-back to reach the goal position,
temporarily causing worse performance. Further discussion
on whether the proposed algorithm will improve the learning
performance is contained in Section V.

B. Using a Simulated Prior on an Inverted Pendulum

In this section we verify the performance of Algorithm 1
on a physical implementation of the inverted pendulum,
shown in Figure 1. The pendulum is actuated using two
propellers driven by independent brushless motors. The
propellers are facing opposite directions, blowing air away
from each other. The control input to the motors keep the
propellers spinning at all times as brushless motors have a
significant spin-up time when starting from rest. The angle
and angle rate of the pendulum are estimated using on-
board inertial sensors (rate gyro and accelerometer). These
estimates are relatively low-noise and so are treated as truth
in the learning process. Policy roll-outs are performed by
sending policy parameters to the on-board microcontroller
which, in turn, implements a nonlinear deterministic GP
policy using the received parameters. Observed state values
and control inputs are sent back to the host computer
upon completion of the roll-out as the policy learning is
not performed on-board the robot. The control is executed

at 20 Hz and each roll-out is 3 seconds long, giving 60
additional data points for each new policy update phase.

The prior comes from a very simple simulation of the
physical pendulum with parameters such as mass, inertia, and
commanded force roughly measured or estimated. Figure 5
shows a comparison of the proposed algorithm with both
prior transition dynamics and initial policy parameters com-
ing from the simulator. The simple simulator does not model
physical effects such as aerodynamic interactions between
the propellers or the change in generated torque as a function
of angular rate. Thus, the initial policy parameters do not do
much better than random control signals at stabilizing the
system (episode 0 in Figure 5). However, with just 3 seconds
of data from the initial policy roll-out, the proposed algo-
rithm is able to consistently stabilize the pendulum. The zero-
mean original PILCO algorithm, on the other hand, requires
on average at least 3 times as much data from the real system
before a stabilizing controller is learned.

A video showing the performance of the hardware using
the two algorithms can be found at http://youtu.be/
kKClFx6l1HY.

V. DISCUSSION

PILCO does not have exploration strategy guarantees but
rather relies an exploration-exploitation strategy that emerges
from the saturating cost function used in the experiments.
While this strategy appears to work well in general, as
shown in the previous section, in our experience PILCO
does not always converge to the global optimum. Even in
simple problems such as the inverted pendulum the algorithm
occasionally gets stuck in local minima. One advantage
of the proposed modifications to the PILCO algorithm is
the ability to apply any applicable learning strategy in the
simulated domain and use the data to form a prior for the
modified PILCO algorithm. Also, since running the simulator
is most likely much cheaper and easier than running the
physical hardware, many learning instances could be run in
the simulator before turning on the physical hardware.

In the results in the previous section we made sure
to use data for the prior from a learning instance where
the algorithm converged to near-optimal behavior. As such
behavior will not, in general, be known beforehand in any
giving learning setup, the prior could instead be chosen by
repeatedly applying a learning algorithm in the simulator
with varying initial conditions and then using the data from
the best performance.

Note that using a simulated prior will not increase the
algorithm performance in all cases. If the simulation is
arbitrarily poor, the prior can bias the transition dynamics in
the wrong directions. Given sufficient data from the target
domain, the observed data will eventually overpower the
prior. However, since PILCO is a policy search algorithm
that follows local gradients, a poor prior can alter the policy
search directions and lead to different policies than had no
prior been used.

We also note that, as discussed in [10], applying policies
learned in imperfect simulations can yield arbitrarily poor
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performance, possibly even causing harm to the robot if
the policy is overly aggressive. Thus, transferring the initial
policy should be done with care. If there is danger of harming
the robot, the prior dynamics model can be used with a
random, or less aggressive, initial policy.

VI. CONCLUSION

We introduced a method for incorporating data from
arbitrary simulators in the PILCO learning framework. The
simulated data are used to learn a GP model of the simulated
transition dynamics. The mean of these dynamics is then
used as an informative prior for the real transition dynamics
in the target domain. We derived the appropriate equations
for predicting the mean and covariance of uncertain inputs
using a GP with a mean modeled as an RBF network. The
proposed extensions to the PILCO algorithm are demon-
strated to result in faster and more robust convergence to
good policies than the original PILCO algorithm. These
results are shown in both simulated domains and on a
physical inverted pendulum using a simple simulator.

APPENDIX

Here we derive Eq. (3)-(5) from Section III. Following
the outline of the derivations in [16] and [17] the predictive
mean of uncertain input x∗ ∼ N (µ,Σ) is given by

µ∗ = Ex∗,ff [f(x∗)] = Ex∗ [Ef [f(x∗)]]

= Ex∗ [k(x∗, X)β +m(x∗)]. (6)

We assume the prior mean function m(x∗) is the mean of a
GP that is trained using data from a simulator. Thus,

m(x∗) = kp(x∗, Xp)βp

where {Xp,yp} are the simulated data, βp = (Kp +
σ2
np
I)−1(yp −m(Xp)), Kp = kp(Xp, Xp), and σ2

np
is the

noise variance parameter of the simulated data. Note that we
assume that the prior mean is trained using a zero-prior GP.
Substituting the form of the mean function into Eq. (6) yields

µ∗ = βTq + βTp qp, (7)

where qi = α2|ΣΛ−1+I|−1/2 exp(− 1
2ν

T
i (Σ+Λ)−1νi) with

νi = xi−µ. The corresponding prior terms are similar with
qpi = α2

p|ΣΛ−1p + I|−1/2 exp(− 1
2ν

T
pi(Σ + Λp)

−1νpi) and
νpi = xpi − µ.

Multi-output regression problems can be solved by train-
ing a separate GP for each output dimension. When the
inputs are uncertain, these output dimensions covary. We now
compute the covariance for different output dimensions a and
b as

Covx∗,f [fa(x∗),fb(x∗)] = Ex∗ [Covf [fa(x∗), fb(x∗)]]

+ Ex∗ [Ef [fa(x∗)]Ef [fb(x∗)]]

− Ex∗ [Ef [fa(x∗)]]Ex∗ [Ef [fb(x∗)]]. (8)

As noted in [17], due to the independence assumptions
of the GPs, the first term in Eq. (8) is zero when a 6= b.
Also, for a given output dimension, Covf [fa(x∗), fb(x∗)]

does not depend on the prior mean function. Therefore, using
the results of [16], the first term in Eq. (8) becomes

Ex∗ [Covf [fa(x∗), fb(x∗)]] =

δab(α
2
a − tr((Ka + σ2

εaI)−1Q)), (9)

where δab is 1 when a = b and 0 otherwise, and

Q =

∫
ka(x∗, X)T kb(x∗, X)p(x∗)dx∗

Qij = |R|−1/2ka(xi,µ)kb(xj ,µ) exp( 1
2z

T
ijT
−1zij) (10)

R = Σ(Λ−1a + Λ−1b ) + I

T = Λ−1a + Λ−1b + Σ−1

zij = Λ−1a νi + Λ−1b νj .

The third term in Eq. (8) is computed using Eq. (7) as

Ex∗ [Ef [fa(x∗)]]Ex∗ [Ef [fb(x∗)]] =(
βTa qa + βTpaqpa

)(
βTb qb + βTpbqpb

)
. (11)

Finally, we compute the second term in Eq. (8) as

Ex∗ [Ef [fa(x∗)]Ef [fb(x∗)]] =

Ex∗ [k(x∗, X)βak(x∗, X)βb +ma(x∗)mb(x∗)+

ma(x∗)k(x∗, X)βb + k(x∗, X)βamb(x∗)]. (12)

As above, we will compute each term separately. Using
Eq. (10), the first term in Eq. (12) becomes

Ex∗ [k(x∗, X)βak(x∗, X)βb] = βTaQβb. (13)

Similarly, the second term in Eq. (12) is

Ex∗ [ma(x∗)mb(x∗)] =

Ex∗ [kp(x∗, Xp)βpakp(x∗, Xp)βpb ] = βTpaQpβpb ,
(14)

where Qp is defined analogously to Eq. (10) but using the
prior rather than the current data. The third term in Eq. (12)
is

Ex∗ [ma(x∗)k(x∗, X)βb] =

βTpaEx∗ [kp(Xp,x∗)k(x∗, X)]βb = βTpa(pQ̂)βb, (15)

where pQ̂ is defined as

pQ̂ =

∫
kpa(x∗, Xp)

T kb(x∗, X)p(x∗)dx∗

pQ̂ij = |pR̂|−1/2kpa(xpi ,µ)kb(xj ,µ)×
exp( 1

2 (pẑij)
T (pT̂ )−1(pẑij) (16)

pR̂ = Σ(Λ−1pa + Λ−1b ) + I
pT̂ = Λ−1pa + Λ−1b + Σ−1

pẑij = Λ−1pa νpi + Λ−1b νj .



The forth term in Eq. (12) is analogously defined as
βTa Q̂

pβpb , where

Q̂p =

∫
ka(x∗, X)T kpb(x∗, Xp)p(x∗)dx∗

Q̂pij = |R̂p|−1/2ka(xi,µ)kpb(xpj ,µ)×
exp( 1

2 (ẑpij)
T (T̂ p)−1ẑpij) (17)

R̂p = Σ(Λ−1a + Λ−1pb ) + I

T̂ p = Λ−1a + Λ−1pb + Σ−1

ẑpij = Λ−1a νi + Λ−1pb νpj .

Combining Eq. (9)-(17) we obtain the covariance for an
uncertain input with multiple outputs. Writing this covariance
element-wise we obtain

σ2
ab = δab(α

2
a − tr((Ka + σ2

εaI)−1Q)) + βTaQβb+

βTpaQpβpb + βTpa
pQ̂βb + βTa Q̂

pβpb−(
βTa qa + βTpaqpa

)(
βTb qb + βTpbqpb

)
. (18)

The final derivation needed for propagating uncertain in-
puts through the GP transition model in the PILCO algorithm
is the covariance between the uncertain test input x∗ ∼
N (µ,Σ) and the predicted output f(x∗) ∼ N (µ∗,Σ∗). This
covariance is calculated as

Σx∗,f∗ =Ex∗,f [x∗f(x∗)
T ]− Ex∗ [x∗]Ex∗,f [f(x∗)]

T

=Ex∗,f [x∗k(x∗, X)β]−
Ex∗ [x∗]Ex∗ [k(x∗, X)β]T+

Ex∗,f [x∗kp(x∗, Xp)βp]−
Ex∗ [x∗]Ex∗ [kp(x∗, Xp)βp]

T .

Here we have separated the input-output covariance into a
part that comes from the current data and a part that comes
from the prior data. Therefore, we can directly apply the
results from [16] to obtain

Σx∗,f∗ =Σ(Σ + Λ)−1
n∑
i=1

βiqi(xi − µ)+

Σ(Σ + Λp)
−1

np∑
i=1

βpiqpi(xpi − µ). (19)

Note that in the derivation above we do not assume that
there are the same number of data points in the prior GP and
the current GP. Thus, the matrices pQ̂ and Q̂p need not be
square.
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